ケーブルのシールド性能の評価 — IEC 62153-4-4, -4-7 の概要

株式会社 e・オータマ 佐藤智典

2022年1月31日

目 次

+सा स

T	帆女	:	Т
2	遮蔽	減衰量の測定	2
	2.1	測定の方法	2
		2.1.1 ケーブル — IEC 62153-4-4	2
		2.1.2 コネクタやケーブル・アセンブリ	
		— IEC 62153-4-7	3
	2.2	遮蔽減衰量 a _s の算出	4
	2.3	測定周波数範囲	4
	2.4	測定対象ケーブルの外径の範囲	5
3	結合	☆減衰量の測定	5
	3.1	測定の方法..................	5
		3.1.1 平衡型のコネクタやケーブル・ア	
		センブリ	5
		3.1.2 平衡型のケーブル	6
	3.2	結合減衰量 ac の算出	6
4	伝達	『インピーダンスの測定	7
	4.1	測定の方法.................	$\overline{7}$
	4.2	伝達インピーダンス Z _T の算出	7
5	補足	<u>!</u>	7
	5.1	ケーブルとコネクタの測定	$\overline{7}$
	5.2	ケーブル取付用以外のコネクタの処理	8
	5.3	ケーブルの影響を除きたい場合.....	8
	5.4	特性インピーダンスの同定	8
	5.5	その他の測定法の例..........	9
		5.5.1 IEC 62153-4 シリーズ	9
		$5.5.2 {\rm MIL}\mbox{-}{\rm STD}\mbox{-}{\rm 1344A}\ {\rm Method}\ 3008$.	9
		5.5.3 その他	10

\mathbf{o}		次ミ	/5
h i	ふた.	百7	2
•	~ .	~~ 1	

 $\mathbf{10}$

1 概要

IEC 62153-4-4^[1] は、例えば 200 MHz から 3 GHz 程度の周波数範囲でのシールド・ケーブルのシール ド性能の評価に適した、比較的長い (例えば 2~3 m 程度の) 測定用チューブを用いた三重同軸法による 遮蔽減衰量の測定について述べている。使用する測 定器などに依存するものの、比較的高いダイナミッ ク・レンジでの測定を達成可能で、例えば二重の外 部導体を持つ同軸ケーブルのようなかなり高いシー ルド性能を持つケーブルの評価も可能である。

遮蔽減衰量の測定は測定用チューブ内を引かれる ケーブルが充分に長くなる高い周波数範囲、例えば 200 MHz 程度以上について行なうことができる。ま た、低い周波数では遮蔽減衰量の測定は行なえない が、そのケーブルが電気的に短くなる低い周波数範 囲、例えば 10 MHz 程度以下の周波数範囲につい ては遮蔽減衰量と同様の測定方法で伝達インピーダ ンスに容易に換算可能な結果を得ることができる。

遮蔽減衰量や伝達インピーダンスを測定可能な 周波数範囲は限られているが、類似のケーブル間の 相対的な比較などの目的の場合、遮蔽減衰量や伝達 インピーダンスへの換算を行なわずに、また上記の ような周波数の制限を気にせずに、広い周波数範囲 (例えば kHz のオーダーから数 GHz までの全周波 数範囲) で測定された減衰量をそのまま比較するこ ともできるであろう。

IEC 62153-4-7^[2] はシールド・コネクタやシール ド・ケーブル・アセンブリの評価を意図したもので、 IEC 62153-4-4 と良く似ている。

IEC 62153-4-7 の遮蔽減衰量の測定は IEC 62153-4-4 と同様の測定原理に基づくが、測定対象となる 短いコネクタやケーブル・アセンブリへの対応のた め、測定対象のコネクタやケーブル・アセンブリま でを測定用チューブ内を引かれる適切な長さの接続 ケーブルで接続することで遮蔽減衰量の測定のた めに必要な長さを確保するように、また接続ケーブ

ルからの漏洩の測定の結果への影響を抑えるために 測定用チューブ内を引かれる接続ケーブルを金属の 延長チューブに通して遮蔽するようになっており、 「チューブ・イン・チューブ法」と呼ばれている。

IEC 62153-4-7 では平衡型のコネクタやケーブル・ アセンブリの結合減衰量 (差動信号からの漏洩を抑 制する能力の指標となる) の測定についても述べら れている。

本稿ではこの IEC 62153-4-4 と IEC 62153-4-7 の概要を述べる。なお、本稿はその内容全てをカ バーするものではなく、また正確であるとも限らな いので、正確な情報は規格そのもの^{[1][2]}を参照さ れたい。

2 遮蔽減衰量の測定

2.1 測定の方法

2.1.1 ケーブル — IEC 62153-4-4

IEC 62153-4-4 ではシールド・ケーブルの遮蔽減 衰量 (screening attenuation) の三重同軸法による 測定について述べられている。

この測定では、図1に示すように測定対象のシー ルド・ケーブルの芯線 (多芯ケーブルの場合は図2の ように全ての芯線を一括接続する) とシールドのあ いだにその特性インピーダンスと等しい終端抵抗を 接続して終端した上でしっかりと遮蔽したもの^{†1}を 銅や黄銅の測定用チューブの中に通し、測定対象の

⁺¹ 終端部のシールド性は測定対象ケーブルのシールド性より も高いべきであり、さもなくば終端部からの漏洩が測定結果に 有意に影響することになる。従って、測定対象ケーブルのシー ルド性が高い場合、終端部のシールドは非常にしっかりと行な うことが必要となる。だが、大抵の場合は、銅テープで隙間を生 じないように覆ってケーブルのシールドとしっかりと接続する 程度でも充分かも知れない。必要な場合、終端部のシールドが 測定結果に影響していないかどうかのチェックは、例えば測定対 象ケーブルを追加のシールド(金属のチューブや銅テープなど) で覆って測定されたシールド性が上がるかどうかを確認するこ とで行なえるだろう。

図 2: 多芯ケーブルの処理 — 全ての芯線を一括接続して 一本の同軸ケーブルのように扱う

シールド・ケーブルの芯線とシールドのあいだに信 号を注入する。^{†2†3}

ケーブルに注入された信号はケーブルの芯線と シールドのあいだを伝搬して終端抵抗で吸収される が、その一部はケーブルのシールドを通して漏れ出 してケーブルのシールドとその外側の測定用チュー ブから成る同軸状の二次回路上を伝搬し、チューブ の反対側に接続されたレシーバに到達する。

測定用チューブは電気的に長く、レシーバには測 定対象のケーブルやコネクタの様々な箇所からの漏 洩、測定用チューブの近端での反射波、測定対象の 伝達インピーダンスによって遠端に現れる信号など が到達して互いに強め合ったり打ち消し合ったりす ることからレシーバで受信される信号のレベルは周 波数によって大きな変動を生じる(図4)。だが、そ の包絡線は測定対象のケーブルやコネクタからの漏 洩の電力と関係し、そのシールドの効果が低ければ 包絡線のレベルは高くなるので、測定用チューブの

^{†4}本稿で言う「校正」は、例えば1年毎に行なわれるような 校正ではなく、VNA の使用の都度行なわれる誤差補正のための 作業を指す。

^{†2} この測定法の「三重同軸 (triaxial) 法」という呼称は、シー ルド・ケーブルの芯線、シールド、及び測定用チューブの 3 つ が同軸状となることに由来する。

^{†3} 図1などの図は測定対象のケーブルを信号源に直接接続す るような形となっているが、実際には測定用チューブの直近ま で同軸ケーブルで接続して測定対象ケーブルに繋ぎ込むような 形となる(図3)。測定対象のケーブルと測定系の同軸ケーブルと の接続には工夫が、場合によってはある程度強引な手段が必要 となるかも知れない。測定対象ケーブルの余長(測定用チューブ の外側を引かれる部分)が長いと信号を不必要に減衰させること になる(一般のケーブルの高い周波数の同相信号に対する減衰は 非常に大きいものとなることがあり、例えば20 cm 程度の余長 も測定の結果に著しい影響を与えるかも知れない)ので、この余 長は最小限とすべきである。信号源からの、またレシーバへの 同軸ケーブルの影響は VNA の校正^{†4}(望ましくはフル2ポート 校正)を同軸ケーブルを含めて行なえばキャンセルできる。

入力と出力のあいだで測定された減衰量 (*S*₂₁^{†5}) を 測定対象のケーブルやコネクタのシールドの効果の 指標として考えることができる。^{†6}

図1や上の説明では信号発生器とレシーバを用い るような形で述べているが、実際の測定はSパラ メータ・テスト・セットを備えたベクトル・ネット ワーク・アナライザ (VNA) で行なうことが推奨さ れる。(図3)。

図 3: IEC 62153-4-4 測定での VNA の接続のイメージ

§2.3 で述べるように、遮蔽減衰量に換算可能な結 果を得られる周波数範囲の下限には結合長 *l*、すな わち測定用チューブ内を引かれたケーブルの長さが 影響し、低い周波数からの測定のためには結合長 *l* を長くすることが必要となる。

この周波数範囲での S₂₁ の包絡線のレベルは結 合長 *l* には依存しないと考えられ、結合長 *l* を変え た場合もその補正などは不要である。

2.1.2 コネクタやケーブル・アセンブリ — IEC 62153-4-7

IEC 62153-4-7 はシールド・コネクタやシールド・ ケーブル・アセンブリ (短いもの) の遮蔽減衰量の三 重同軸チューブ・イン・チューブ法による測定に関 する情報を含む。

図 4: IEC 62153-4-4 測定セットアップでの S₂₁ の測定 結果の例

この測定は §2.1.1で述べたような IEC 62153-4-4 と同じ原理に基づくが、短い測定対象のコネクタや ケーブル・アセンブリへの対応のため、測定対象のコ ネクタやケーブル・アセンブリまでを測定用チュー ブ内を引かれる適切な長さの接続ケーブルで接続す ることで遮蔽減衰量の測定を行ないたい周波数範囲 の下限に見合った結合長 *l* を確保するようになって いる。

だが、そのままでは測定対象ではない接続ケーブ ルのシールド性が測定の結果に影響する可能性が生 じるため、図5 や図6に示すように測定用チューブ 内を引かれる接続ケーブルを金属の延長チューブ^{†7} に通して遮蔽してその影響をできる限り排除するよ うになっており、この測定法はこの理由から「チュー ブ・イン・チューブ法」と呼ばれている。

図 5: IEC 62153-4-7 でのコネクタの遮蔽減衰量の測定

この測定法では測定用チューブ内を引かれる接続 ケーブルでの減衰も測定結果に影響するため、その 考慮も必要となる。IEC 62153-4-7 は VNA の校 正 (望ましくはフル2ポート校正)を接続ケーブル を含めて行なうように述べており、これに従えば接

^{†5} S₂₁ は S パラメータでのポート 1 からポート 2 への伝達 を示すパラメータで、ポート 1 からの入射波の電力の平方根に 対するポート 2 からの出射波の電力の平方根を示す複素数の値 となり、これは関係する全ての箇所のインピーダンスが等しけ ればそれらの電圧の比率と一致する。より詳しく知りたい方は S パラメータに関する解説を参照いただきたい。S₂₁ 自身は減 衰量ではないが、換算可能で、本稿ではそれらの表現を区別せ ずに用いる。

^{†6} 意味があるのは包絡線で、個々の周波数での値そのもので はない。例えば図 4で 200 MHz や 300 MHz 近傍での減衰量 が小さくなっているのが見られるが、これはそれらの周波数で のシールド性がその前後の周波数よりも悪いことを意味するわ けではない。

^{†7} 適切な太さの、厚さ 1 mm 以上の銅や黄銅のチューブ。

図 6: IEC 62153-4-7 でのケーブル・アセンブリの遮蔽減 衰量の測定

続ケーブルでの損失はキャンセルされる。だが、そ のコネクタと組み合わせて使用される実際のシール ド・ケーブルを接続ケーブルとして使いたい、接続 ケーブルの端に測定対象の(あるいはそれと嵌合す る)コネクタをあらかじめ取り付けておきたい、な どの理由から、VNAの校正を接続ケーブルを含め て行なうことは難しいものとなるかも知れない。接 続ケーブルでの損失が測定結果に有意に影響しそう であるが、その影響を VNAの校正でキャンセルす ることが実際的でない場合、接続ケーブルでの損失 を別に測定して補正を行なうなどの対応が必要とな りそうである。

2.2 遮蔽減衰量 *a*_s の算出

150 $\Omega^{\dagger 8}$ に正規化された遮蔽減衰量 a_s は、§2.1で 述べたような方法での測定結果 (S_{21}) から、測定系 の特性インピーダンスを Z_0 (= 50 Ω)、測定対象 のケーブルやコネクタの特性インピーダンスを Z_1 、 信号源と測定対象のケーブルやコネクタとのあいだ での反射係数を $\gamma = |(Z_0 - Z_1)/(Z_0 + Z_1)|$ として 以下の式の包絡線 (<u>env</u>elope) として求められる:

$$a_{s} = Env \left\{ \begin{array}{l} -20 \log_{10} |S_{21}| \\ +10 \log_{10} \left| 1 - \gamma^{2} \right| + 10 \log_{10} \left| \frac{300 \ \Omega}{Z_{1}} \right| \right\}$$

ここで、 $10 \log_{10} |1 - \gamma^2|$ は信号発生器と測定対象 のケーブルの特性インピーダンスの不整合によって 測定対象のケーブルの入り口で信号発生器から出力 された信号の一部が反射される (測定対象のケーブ ルやコネクタを伝搬する信号のレベルが低下し、減 衰量が高く測定される) 影響の補正のためのもので、 $Z_1 = Z_0$ の場合は $0 \text{ dB}, Z_1 \neq Z_0$ の場合は < 0 dBとなる。^{†9}

 S_{21} の測定に際して補正されていない損失 (例えば §2.1.2 で触れた IEC 62153-4-7 における接続ケーブルでの損失のような) が他にある場合はその考慮も必要となる。

2.3 測定周波数範囲

この方法での測定結果 (S_{21}) から遮蔽減衰量 a_s の算出を行なえる周波数範囲の下限は結合長 l と誘 電率の影響を受け、結合長 l、測定対象ケーブルの誘 電体の比誘電率 ε_{r1} 、測定対象ケーブルのシールド や延長チューブとその外側の測定用チューブとから 成る同軸状の二次回路の誘電体の比誘電率 $\varepsilon_{r2} \approx 1$ として、

$$f > \frac{c_0}{2 \times l \times |\sqrt{\varepsilon_{r1}} - \sqrt{\varepsilon_{r2}}}$$

となる。

この周波数は、例えば測定対象ケーブルの誘電 体の比誘電率 $\varepsilon_{r1} = 2$ 、結合長 l = 2 m とすると 180 MHz 程度、l = 3 m とすれば 120 MHz 程度と いう計算となる。

また、低損失のマイクロ波用同軸ケーブルのよう に誘電体に発泡材が用いられている場合は実効的 な ε_{r1} は 1.3 程度となるかも知れず、その場合は l = 2 mで 530 MHz 程度、l = 3 mでも 350 MHz 程度という計算となる。

必要な場合、非常に長い測定用チューブを用いる ことでより低い周波数からの遮蔽減衰量測定を行な うことも可能であろうが、そのような周波数での遮 蔽減衰量の測定が必要な場合は他の評価方法、例え ば IEC 62153-4-5 で述べられている吸収クランプ 法の使用などを考えた方が良さそうに思われる。

一方、測定周波数範囲の上限は結合長やケーブル 内の誘電体とは無関係で、測定対象ケーブルのシー ルドや延長チューブとその外側の測定用チューブと から成る同軸状の二次回路のカットオフ周波数から 決まる。

同軸線路のカットオフ周波数 f_c は高次モードの電磁界が伝搬できるようになる最低の周波数であり、

^{†8} 150 Ω は典型的なケーブルの設置での特性インピーダンスを 代表すると考えられるものであり、また吸収クランプ法 (§5.5.1) で想定されるインピーダンスでもある。

^{†9} IEC 62153-4-4:2006 や IEC 62153-4-7:2006 では $Z_1 \neq Z_0$ の場合はインピーダンス整合回路網を通して接続するように述べられていたが、それらの規格のより新しい版ではインピーダンス整合回路網なしで測定できるようになっている。

外部導体の内径を D、内部導体の外径を d、外部 導体と内部導体のあいだの誘電体の比誘電率を ε_r 、 誘電体の比透磁率を μ_r (ここでは誘電体は空気で、 $\varepsilon_r \approx 1, \mu_r \approx 1$) として、

$$f_c = \frac{c_0}{\pi ((D+d)/2)\sqrt{\mu_r \varepsilon_r}} = \frac{c_0}{\pi (D+d)/2}$$

より求めることができる。

測定用チューブの内径 D は標準的には約 50 mm で、この場合、ケーブルのシールドの外径 d =10 mm の場合は $f_c \approx 3.2$ GHz、d = 20 mm の 場合でも $f_c \approx 2.7$ GHz となり、概ね 3 GHz 程度 までの測定が可能と考えられる。

より高い周波数までの測定が必要な場合、測定用 チューブを細くすればカットオフ周波数 f_c をある 程度は高くできる^{†10}ものの、そのような周波数で の評価が必要な場合は他の評価方法、例えば §5.5.2 で触れるような方法の使用を考えた方が良さそうに 思われる。

上で述べたように、測定可能な周波数範囲に主に 測定用チューブの内径から決まる上限があるだけで なく、遮蔽減衰量への換算が可能な周波数範囲には 下限もあり、この方法での遮蔽減衰量の測定が可能 な周波数範囲は比較的限られている。だが、類似の ケーブルやコネクタ間の相対的な比較などの目的の 場合、遮蔽減衰量や伝達インピーダンス (§4) など への換算を行なわずに、また上記のような遮蔽減衰 量測定に関する周波数の下限を気にせずに、図4に 例示したような、広い周波数範囲で測定された減衰 量 (S₂₁)をそのまま比較することもできるだろう。

2.4 測定対象ケーブルの外径の範囲

測定対象ケーブルのシールドや延長チューブとそ の外側の測定用チューブとから成る同軸状の二次回 路の特性インピーダンスが測定系のインピーダンス と整合している必要はないが、それが測定系のイン ピーダンスよりも高いことが求められている。

同軸線路の特性インピーダンス Z_0 は、外部導体 の内径を D、内部導体の外径を d、外部導体と内部 導体のあいだの誘電体の比誘電率を ε_r として、

$$Z_0 = \frac{60}{\sqrt{\varepsilon_r}} \ln\left(\frac{D}{d}\right)$$

より求めることができる。

 $\varepsilon_r \approx 1$ の場合は $D/d \gtrsim 2.3$ で $Z_0 \ge 50 \Omega$ となるので、測定用チューブの内径が 50 mm の場合はシールドの外径が 20 mm 程度以下のサンプルを測定可能ということになる。

3 結合減衰量の測定

3.1 測定の方法

3.1.1 平衡型のコネクタやケーブル・アセンブリ

実際の使用で差動信号の伝送に用いるシールドさ れた平衡型のコネクタやケーブル・アセンブリの場 合、図7に示すように、芯線とシールドのあいだに信 号を印加する代わりに通常の差動信号と同様に平衡 ペアに差動信号を印加した時に測定対象のコネクタ やケーブル・アセンブリのシールドと測定用チュー ブとのあいだに現れる信号のレベルを測定すること も考えられる。IEC 62153-4-7 ではこれは結合減衰 量 (coupling attenuation) の測定として述べられて いる。

この測定では、ケーブル内の平衡ペアに印加され た差動信号の一部がその不平衡に伴って同相信号に 変換され、その同相信号の一部がシールドを介して 漏洩して測定用チューブの出力で測定されるような 状況となる。

この測定の結果は、例えば HDMI や USB のよ うな差動信号を用いた高速通信における差動信号の シールド・ケーブルからの漏洩を抑制する能力の指 標となると考えられる。

図7では信号をバランを介して差動信号に変換し て印加するように示しているが、その代わりにミク スト・モードのSパラメータの測定が可能なベクト ル・ネットワーク・アナライザを用いることもでき る (図 8)。

図 7: IEC 62153-4-7 での結合減衰量の測定

^{†10} 例えば D=20 mm, d=5 mm の場合は $f_c\approx 7.6~{\rm GHz}$ となる。

図 8: IEC 62153-4-7 での結合減衰量の測定 (ミクスト・ モード S パラメータ測定)

この測定に際しては信号を印加する平衡ペアは例 えば図9に示すように測定対象の差動モードと同相 モードの双方の特性インピーダンスで終端する。他 の平衡ペアは両側とも開放のままで良い。

図 9のような終端の場合、定数 R_1 、及び R_2 は、 差動モードの特性インピーダンスを Z_d 、同相モー ドの特性インピーダンスを Z_c として、

$$R_1 = Z_d/2$$
$$R_2 = Z_c - R_1/2$$

となる。

図 9: 結合減衰量測定に際しての終端

測定で使用するバランや終端、接続ケーブル (IEC 62153-4-7 の場合)、またそれらのあいだの接 続部の不平衡は測定結果に影響する可能性があるの で、それらが測定周波数全域でかなり良い平衡を持 つことが必要となりそうである。

このためもあり、この測定の実施は遮蔽減衰量の 測定よりもかなり難しいものとなることが予期さ れる。

原理上、結合減衰量 a_c は、不平衡減衰量を a_u 、 遮蔽減衰量を a_s として、

$a_c = a_u + a_s$

となると考えられる。従って、測定対象のケーブル やコネクタの不平衡減衰量 *a*_u を別の方法で把握で きれば、結合減衰量 *a*_c をここで述べたような方法で 測定する代わりに、その不平衡減衰量 a_u と §2で述べたような方法で測定した遮蔽減衰量 a_s とから結合減衰量 a_c を推定することもできるかも知れない。

3.1.2 平衡型のケーブル

シールドされた平衡型のケーブルの結合減衰量の 三重同軸法による測定は IEC 62153-4-9^{†11}で別に扱 われており、IEC 62153-4-4 はこれに関する記載を 含まない。

だが、その長さのサンプルでの結果が得られれば 良い場合は、ここで述べたような測定法を準用して、 だが延長チューブは用いずに同様に測定を行なうこ とができるかも知れない。

3.2 結合減衰量 *a_c* の算出

結合減衰量 a_c は、測定された減衰量の最小値を $a_{m,min}^{\dagger 12}$ 、バランの挿入損失を a_z 、測定対象のケー ブルの特性インピーダンスを Z_1 として、

$$a_c = a_{m,min} - a_z + 10\log_{10} \left| \frac{300 \ \Omega}{Z_1} \right|$$

から求められる。

この式では遮蔽減衰量の算出のための式 (§2.2) と 異なり不整合に伴う損失の補正は明示的に示されて いない。この測定ではバランで整合が取られている べきであろうし、バランの不整合に伴う損失があれ ばそれも *a_z* に含まれることになるだろうが、場合 によっては遮蔽減衰量の場合と同様にその補正を別 に考慮することが必要となるかも知れない。

減衰量 *a_{m,min}* の測定に際して補正されていない損失が他にある場合はその考慮も必要となる。 IEC 62153-4-7 では、遮蔽減衰量測定 (§2.1.2)の場合と同様、接続ケーブルでの損失が VNA の校正でキャンセルされていないならばその補正が必要となりそうである。

^{†11} これは本稿で述べる測定法と似ているが、ケーブルの不平 衡減衰量の影響を反映させるための 100 m のサンプルの使用を 伴う。

^{†12} 一般に、 $a_{\text{meas}} = 10 \log_{10}(P_1/P_2) = -20 \log_{10}|S_{21}|$ 。

4 伝達インピーダンスの測定

4.1 測定の方法

高い周波数範囲については §2 で述べたような方 法で遮蔽減衰量 a_s を得ることができるが、結合長が 電気的に短い周波数範囲については、ケーブル^{†13}、 コネクタ、またケーブル・アセンブリのいずれにつ いても遮蔽減衰量の測定と同様の方法での測定の 結果から表面伝達インピーダンス (surface transfer impedance) Z_T を容易に算出することができる。

電気的に短いシールド・ケーブルの伝達インピー ダンス Z_T は

 シールドを流れる電流に対する、その電流に 伴って内部回路に誘起する電圧の比率 (図10)、 あるいは

内部回路を流れる電流に対する、その電流に
伴ってシールドに誘起する電圧の比率(図11)

として定義することができ、ここで述べる測定法で は後者が測定される形となる。

4.2 伝達インピーダンス Z_T の算出

結合長 l が電気的に短い場合、すなわち

$$f < \frac{c_0}{10 \times l \times \sqrt{\varepsilon_{r1}}}$$

となる周波数範囲について、図1のセットアップで 終端抵抗 $R_1 = Z_1$ として測定を行なった場合の伝 達インピーダンス Z_T (長さに依存しないように 1 m 当たりに正規化した値としている) と U_1 、及び U_2 の関係は、

$$Z_T \times l \approx Z_1 \times \left| \frac{U_2}{U_1} \right|$$

のようになる。

 $R_1 \neq Z_0$ の場合は補正が必要となるが、 $R_1 = Z_0$ (= 50 Ω)^{†14}として S_{21} を測定した場合は Z_T は単純に

$$Z_T \approx R_1 \times |S_{21}| / l$$

として求められる。

例えば、ケーブルの誘電体の比誘電率 $\varepsilon_{r1} = 2$ の場合、結合長 l = 2 m では 10 MHz 程度以下、結 合長 l = 0.5 m であれば 40 MHz 程度以下の周波 数については伝達インピーダンスを上記のような単純な式で得られると考えられる。

この方法で伝達インピーダンスを算出できる周波 数の上限は結合長 *l* を (従って測定用チューブを) 短くすればそれに応じて高くなり、またより高い周 波数での伝達インピーダンスの算出についての情報 もあるものの、より高い周波数の伝達インピーダン スの測定が必要な場合はそのような周波数での測定 に適した方法の使用、例えば IEC 62153-4-3 を参照 しての短い測定用チューブでの測定を考えた方が良 さそうに思われる。

5 補足

5.1 ケーブルとコネクタの測定

IEC 62153-4-4 はシールド・ケーブルの三重同軸 法での測定について述べており、コネクタを含むア センブリの扱いについては触れられていない。また IEC 62153-4-7 はコネクタや短いケーブル・アセン ブリの三重同軸チューブ・イン・チューブ法での測 定について述べており、接続ケーブルと延長チュー ブの使用を伴う。

だが、ケーブルとコネクタを一括で評価したい、 あるいはケーブルがコネクタよりも高い遮蔽減衰量 を持つであろうことがわかっている^{†15}ような場合、 図 12のように、IEC 62153-4-4 での通常の測定と同

^{†13} ケーブルの三重同軸法での伝達インピーダンス測定は IEC 62153-4-3 でも扱われている。

^{†14} サンプルが電気的に短い場合、整合は重要ではない。

^{†15} 高い周波数ではコネクタの影響(大抵はケーブルとコネク タとのシールドの接続、あるいはコネクタの嵌合箇所での接続 の不完全さに伴う)が支配的となることが多い。

様、ケーブルとコネクタを測定用チューブ内に入れ て延長チューブなしで測定を行なうこともできるだ ろう。

但し、このセットアップで測定対象のコネクタを 流れる信号のレベルはケーブルでの損失に応じて低 下するため、ケーブルでの損失が大きければコネク タからの漏洩の影響はその分甘く評価されるであろ うことに注意した方が良いかも知れない。

図 12: IEC 62153-4-4 を準用してのケーブルとコネクタ の遮蔽減衰量の測定の例

5.2 ケーブル取付用以外のコネクタの処 理

測定対象のコネクタのペアの一方が基板実装型な どケーブル取付用のものの場合、図5などで示した ような形で処理することができないため、状況に応 じた工夫が必要となるだろう。

パネル取り付け型の同軸コネクタのように実際の 使用でコネクタの外部導体 (シールド) をシールド・ ケースに接続することが意図されたコネクタの場合 は、図 13の例のように、小さいシールド・ケース にコネクタを取り付けて測定することができそうで ある。

実際の使用でコネクタの外部導体 (シールド) をプ リント基板のグランド・プレーンには接続するがシー ルド・ケースには接続するようになっていないコネ クタの場合、例えば実際の取り付け状況を模擬する ために片面をグランド・プレーンとした小さい両面 基板に実装して必要な範囲でシールドする (図 14)、 あるいはシールドを行なわずにレシーバへの接続は 基板のグランド・プレーンから直接行なって測定す るなど、コネクタの構造や意図された取り付け方、 またどの部分からの漏洩までを評価に含めたいかな どに応じて個別に対応を考えることが必要となるか も知れない

測定対象のケーブル・アセンブリ 金属の測定用チューブ 図 14: 基板実装型コネクタの処理の例 — 終端は遮蔽す るがレセプタクルは遮蔽しないことにした場合

5.3 ケーブルの影響を除きたい場合

IEC 62153-4-7 では接続ケーブルの影響の低減の ために接続ケーブルを金属の延長チューブで覆い接 続ケーブルのシールドと延長チューブをコネクタの 近くで接続するようになっている (図5)。だが、こ の接続では接続ケーブルの一部が露出した状態とな り、その測定の結果への影響が懸念されることもあ るかも知れない。

接続ケーブルの影響をより確実に除きたい場合は、 図15で示すように延長チューブをコネクタの金属の ボディーに直接接続することで、接続ケーブルの、 また接続ケーブルとコネクタとの接続部の影響を除 いて測定を行なうことも可能だろう。

5.4 特性インピーダンスの同定

測定対象のケーブルの特性インピーダンスが不明 な場合、以下のいずれかの方法で測定することがで

きる:

- 立ち上がり時間 200 ps 以下の TDR (time domain reflectometer) で測定する。
- サンプルの長さが λ/8 程度となる周波数、

$$f_{\rm test} \approx \frac{c_0}{8 \cdot L_{\rm sample} \cdot \sqrt{\varepsilon_{r1}}}$$

における、遠端を短絡とした時のインピーダ ンス Z_{short} 、及び開放した時のインピーダンス Z_{open} を測定し、サンプルの特性インピーダン ス Z_1 を

$$Z_1 = \sqrt{Z_{\text{short}} \cdot Z_{\text{open}}}$$

より求める。

5.5 その他の測定法の例

5.5.1 IEC 62153-4 シリーズ

IEC 62153-4 シリーズでは表1に示すような測定 法が述べられている。

例えば IEC 62153-4-5 では、図16のように吸収 クランプを用いて結合減衰量や遮蔽減衰量を測定す る方法が述べられている。

5.5.2 MIL-STD-1344A Method 3008

MIL-STD-1344A Method 3008^[5] では、図17に 示すような、シールド・コネクタのシールド性のリバ ブレーション・チャンバー (モード撹拌チャンバー) を用いた評価方法が述べられている。

この評価では、シールド・チャンバー内の入力ア ンテナ (図 17ではワイヤで示しているが、通常は広 帯域アンテナが用いられる) から放射された電磁界

図 16: IEC 62153-4-5 (吸収クランプ法) の測定セット アップの例

を測定対象のコネクタやケーブルがどの程度拾い上 げるかを測定し、その結果を参照アンテナ (シール ドされていないワイヤ) で行なわれた同様の測定の 結果と比較することで、測定対象のコネクタやケー ブルの遮蔽の性能を知ることができる。

このようなシールド・チャンバー内の電磁界は壁 面での反射に伴って著しく不均一となるが、適切に 設計されたリバブレーション・チャンバーでは、ス ターラ (撹拌子) でチャンバー内のモードを乱すこ とによって統計的に均一な、またランダムな偏波や 入射方向の電磁界を得ることが可能である。この測 定法では、またチャンバー内での測定対象のコネク タやケーブルの位置や配置、また偏波や指向特性^{†16} の測定結果への影響が抑えられるとともに、チャン バー内の別の位置に設置された参照アンテナで得ら れた結果と直接比較することが可能となっている。

MIL-STD-1344A ではこの測定法は 1~10 GHz までに対するものとして述べられている。だが、そ の適用が 10 GHz までに制限される技術的な理由は なく、より高い周波数までの測定に用いることも可

^{†16} 単純にワイヤを真っ直ぐに引いただけのものであっても、 それが電気的に長くなれば複雑な放射パターンを示すようにな る。これと同様の測定をリバブレーション・チャンバーではなく 電波暗室で行なう (例えば電波暗室内で測定対象のケーブルやコ ネクタにアンテナから電磁波を照射してケーブルやコネクタで 拾われた信号のレベルを測定する、あるいはその逆に測定対象 のケーブルやコネクタに信号を流してそれから漏洩した電磁波 をアンテナで測定するような)ことも考えられるだろうが、その 場合はこれらの影響の考慮も必要となりそうである。

IEC 62153-4-2	遮蔽減衰量と結合減衰量 — 注入クランプ法
IEC 62153-4-3	表面伝達インピーダンス — 三重同軸法
IEC 62153-4-4	遮蔽減衰量 — 三重同軸法
IEC 62153-4-5	遮蔽減衰量と結合減衰量 — 吸収クランプ法
IEC 62153-4-6	表面伝達インピーダンス — ライン注入法
IEC 62153-4-7	伝達インピーダンス、遮蔽減衰量、結合減衰量 — 三重同軸チューブ・イン・チューブ法
IEC 62153-4-8	容量性結合アドミタンス
IEC 62153-4-9	シールド付き平衡ケーブルの結合減衰量 — 三重同軸法
IEC 62153-4-10	貫通/電磁ガスケットの伝達インピーダンスと遮蔽減衰量
IEC 62153-4-11	パッチ・コード、同軸ケーブル・アセンブリ、コネクタ付きケーブルの結合減衰量と遮蔽減衰量 — 吸収クランプ法
IEC 62153-4-12	接続ハードウェアの結合減衰量と遮蔽減衰量 — 吸収クランプ法
IEC 62153-4-13	リンクとチャネルの結合減衰量 — 吸収クランプ法
IEC 62153-4-14	ケーブル・アセンブリの結合減衰量 — 吸収クランプ法
IEC 62153-4-15	伝達インピーダンス、遮蔽減衰量、結合減衰量 — 三重同軸セル
	表 1: IEC 62153-4 シリーズの測定法

× 1: 1EU 02103-4 ノリニヘワ側足伝

	ケーブル	コネクタ、ケーブル・アセンブリ
遮蔽減衰量 as	IEC 62153-4-4	IEC 62153-4-7
結合減衰量 a_c	IEC 62153-4-9	IEC 62153-4-7
伝達インピーダンス Z_T	IEC 62153-4-3, -4-4	IEC 62153-4-7

表 2: IEC 62153-4 シリーズの三重同軸法の適用

能だろう。^{†17}

一方、低い周波数で均一性を得るためには大きな チャンバーとスターラが必要となるため、この測定 法は低い周波数での測定にはあまり適さない。

図 17: MIL-STD-1344A Method 3008 の測定の原理 (MIL-STD-1344A Notice 2^[5] Figure 2 に基づく)

5.5.3 その他

例えば [7] は他のいくつかの評価法に関する情報 を含み、その他にもケーブルやコネクタのシールド に関連する多くの論文が出されている。

[4] はケーブルのシールドに関する書籍で、評価 法のみでなく、ケーブルのシールドに関連する様々 な話題が扱われている。

6 参考資料

- [1] IEC 62153-4-4, Metallic communication cable test methods - Part 4-4: Electromagnetic compatibility (EMC) - Test method for measuring of the screening attenuation a_s up to and above 3 GHz, triaxial method
- [2] IEC 62153-4-7, Metallic communication cable test methods - Part 4-7: Electromagnetic compatibility (EMC) – Test method for measuring of transfer impedance Z_T and screening attenuation a_s or coupling attenuation a_c of connectors and assemblies up to and above 3 GHz - Triaxial tube in tube method

^{†17} 例えば [6] では 40 GHz までの測定について報告されてい る。

[3] Measuring the EMC on RF-connectors and connecting hardware. Tube in tube test procedure, Bernhard Mund, 2019,

https://bda-connectivity.com/wp-content/uploads/ 2019/08/bda_EMCzuerich_script.pdf

- [4] Cable Shielding for Electromagnetic Compatibility, Anatoly Tsaliovich, Springer, 1995, ISBN: 1441947396
- [5] MIL-STD-1344A Notice 2 (1981), Test Methods for Electrical Connectors
- [6] Shielding effectiveness measurements for an SHF/EHF field-to-wire coupling model, Andrew T. McMahon et al., National Symposium on Electromagnetic Compatibility, IEEE, 1989, DOI: 10.1109/NSEMC.1989.37221,

https://doi.org/10.1109/NSEMC.1989.37221

[7] Cable Shielding Test Methods: A comparison of different Test Methods, Joachim Mueller, 2007 IEEE International Symposium on Electromagnetic Compatibility, IEEE, 2007, DOI: 10.1109/ISEMC.2007.231,

https://doi.org/10.1109/ISEMC.2007.231

© 2022 e-OHTAMA, LTD.

All rights reserved.

免責条項 — 当社ならびに著者は、この文書の情報に関して細心 の注意を払っておりますが、その正確性、有用性、完全性、その 利用に起因する損害等に関し、一切の責任を負いません。